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José Flores Delgadoa,c Vicente Garibay Cancho b and Jorge R. Chávez Fuentesa
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Abstract

This report presents a new family of cure rate models derived from a scenario with latent

risk factors under different activation schemes that would lead to the occurrence of the

event of interest. It is considered that the times of activation of the latent factors follow a

generalized exponential distribution, while the number of this factors follows a power series

series distribution. These models incorporate explanatory variables related with the cure

rate through logistic regression. A sensitivity analysis including diagnostic measures based

on case-deletion approaches and local influence is performed. To illustrate the results of this

paper an example with real data is presented.

1 Introduction

The mixture cure rate model was proposed by Boag (1949) to considerer the possibility that a

population may be have: immune (or cured) and susceptible (or no cured) individuals in regard

to some event of interest. In this model the survival function, Sp(t), for the entire population

of individuals is given by

Sp(t) = p0 + (1− p0)S(t), (1)

where S(t) is the survival function of the susceptible individuals and p0 = Sp(∞) is the fraction

of the immune individuals (cured rate). This model has been studied by several authors, for

example, Farewell (1982) assumes that the cure rate for the ith individual in a sample of size n

is given by a logistic regression between p0 and the covariates as follows

p0i =
exp(xi

>β)

1 + exp(xi>β)
, (2)

where xi = (xi1, . . . , xik)
> is a covariate vector and β = (β1, . . . , βk)

> is a vector parameter.
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For the survival function S(t) the exponential, the gamma, and the Weibull distributions are

commonly used.

Alternative cure rate models, known in the literature as The Bounded Cumulative Hazard

Model or The Promotion Time Cure Model, were proposed by Yakovlev et al. (1993), Yakovlev

& Tsodikov (1996), Tsodikov (1998) and Chen et al. (1999). These models introduced the well

known concept of promotion or activation to explain the time to-event.

Extensions of the promotion model have been proposed in the literature, see e.g., Cancho &

Bolfarine (2001), Rodrigues et al. (2009), Hashimoto et al. (2012) and Ortega et al. (2009).

The promotion time cure model was generalized by Cooner et al. (2007), developing a theory

where the event of interest occurs due to latent risk factors according to different activation

schemes. For example, the first activation scheme, that is, the event of interest occurs when

the first risk factor is activated, and the last activation scheme occurs when all risk factors have

been activated. The models presented in this work consider the first and last activation schemes

and assume the logistic regression given in (2), for the cure rate, and the generalized exponential

distribution, for the survival function S(t).

The remaining of this paper is organized as follows. In Section 2 the theory of models with

latent risk factors under activation schemes, introduced by Cooner et al. (2007), is described and

new results based on it are given. Under the first and last activation schemes, two new cure rate

models with covariates are derived in Section 3. These new models also can be derived from

the approach developed by Cancho et al. (2011a) and will be called generalized exponential-

power series cure rate models (EG-SP). Inference methods based on the likelihood is described

in Section 3. In Section 4 a sensitivity analysis of the model is given. To illustrate the results

of this paper an example with real data is presented in Section 6. Finally some conclusions are

provided in Section 7.

2 Models with latent risk factors

The models with latent risk factors according to activation schemes introduced by Cooner et al.

(2007) are defined by the following assumptions

(s1) Let M be a discrete random variable taking values in the set of the natural numbers and

probability function f
M

such that P (M = 0) < 1. M represents the number of latent risk

factors that lead to the occurrence of the event of interest. Let p0 = P (M = 0) denote the

probability of absence of risk factors.

(s2) Let K be a discrete random variable taking values in the set of the natural numbers and

2



such that P (1 ≤ K ≤ M |M = m) = 1, for m = 1, 2, . . . This variable represents the

minimum number of factors that must be activated for the event to occur.

(s3) Let {Z1, Z2 . . . } be a sequence of independent, identically distributed, continuous random

variables, independent of M , with common cumulative probability function Fa and survival

function Sa. These random variables represent the times of activation of the latent factors.

(s4) The time to-event of interest is defined by the extended random variable

T =

{
∞, if M = 0,

Z(K), if M ≥ 1,
(3)

where Z(1) ≤ · · · ≤ Z(K) ≤ · · · ≤ Z(M) are the ordered statistics of the variables

Z1, . . . , ZM . Thus when there aren’t latent risk factors T is equal to infinity, otherwise

it is equal to the time until K out of M risk factors are activated.

An expression for the survival function of T , Sp, is given in the following theorem.

Theorem 1. Under the assumptions (s1)-(s4) the survival function of T is given by

Sp(t) = p0 + (1− p0)S∗(t), para t > 0, (4)

where

S∗(t) =
1

1− p0

∞∑
m=1

m∑
k=1

m∑
j=m−k+1

(
m

j

)
Sja(t)[1− Sa(t)]m−jP (K = k|M = m)f

M
(m). (5)

Furthermore the series in (5) converges uniformly. Also S∗ satisfies the usual properties of a

survival function associated to a positive continuous random variable, that is,

i) S∗ is a continuous function,

ii) S∗ is a decreasing function,

iii) lim
t→0+

S∗(t) = 1 and lim
t→∞

S∗(t) = 0.

These properties are satisfied by Sp, except that in iii) lim
t→∞

S(t) = p0.

Notice that S∗ corresponds to the survival function of the susceptible individuals. Equation

(5) is equivalent to equation (2) in Cooner et al. (2007). It is worth to mention that this

equivalent form and the uniform convergence facilitate the study of the properties of S(t) as

well as it helps to generate new survival functions.
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Proof. Since Sp(t) = P (T > t), then

Sp(t) = P (T > t,M = 0) + P (T > t,M ≥ 1) = P (M = 0) + P (T > t,M ≥ 1). (6)

On the other hand,

P (T > t,M ≥ 1) = P (Z(K) > t,M ≥ 1)

=
∞∑
m=1

m∑
k=1

P (Z(k) > t)P (K = k|M = m)P (M = m).
(7)

By applying the known result of the order statistics

P
(
Z(k) > t

)
=

m∑
j=m−k+1

(
m

j

)
Sja(t)

in the last equation yields

P (T > t,M ≥ 1) =
∞∑
m=1

m∑
k=1

m∑
j=m−k+1

(
m

j

)
Sja(t)[1− Sa(t)]m−jP (K = k|M = m)f

M
(m). (8)

Then, (5) follows from (6) and (8).

The uniform convergence in (5) follows from the Weierstrass criterion by observing that

|S∗(t)| ≤ f
M
(m) for all t > 0, where f

M
(m) is a probability function. Properties i) and iii) follow

from the uniform convergence and the properties of the survival function S
Z
. Property ii) follows

immediately by observing that S∗(t) = 1
1−p0 P (T > t,M ≥ 1).

Del teorema anterior conviene dar las observaciones siguientes, de acuerdo con Cooner et al.

(2007)

a) If p0 = 0 a non cure rate model is obtained, where the survival function is S∗ given by (5).

b) When p0 > 0, the model with latent risk factors becomes a mixture cure rate model, where

the cure rate is p0 = P (M = 0), and the survival function of the susceptible individuals is

S∗ given by (5).

c) The mixture cure rate model given in (1) becomes a model with laten risk factors when

M follows a Bernoulli distribution with P (M = 1) = 1− p0 and Sa(t) = S(t).

d) The promotion time cure rate model becomes a model with laten risk factors when

K = 1, M follows a Poisson distribution and the times of activation follows an exponential

distribution.
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Thus, the model with latent risk factors by Cooner et al. (2007) describes how the time to-event

is generated. The mixture cure rate and the promotion time models are particular cases of this

model. Notice that this model also provides a general way to obtain survival distributions by

specifying the distribution of M and K. When P (M = 0) > 0 a non-cure rate model is obtained.

Corollary 1 establishes that when the distribution of M is truncated in zero the survival

function obtained is the one that corresponds to the susceptible individuals. This result is not

given in Cooner et al. (2007).

Corollary 1. Let Sp(t) = p0 + (1− p0)S∗(t) be the cure rate model obtained under assumptions

of Theorem 1. When the distribution f
M

is truncated in zero the resulting survival function is

S∗(t).

Proof. Since the distribution of f
M

truncated in zero is 1
1−p0 fM

(m), the claim follows from 5.

In subsections 2.1 and 2.2 examples are given to illustrate this result.

The remaining of this section is dedicated to show three specifications for the distribution of

K called by Cooner et al. (2007) as activation schemes.

2.1 The first-activation scheme

In this case K = 1 that is, the first activation makes the event of interest to appears. Thus

the time to-event, the survival function of the susceptible individuals, S∗F (t), and the survival

function of the entire population, SpF (t), where F denotes the first activation, become

T =

{
∞, if M = 0,

Z(1) = min{Z1, . . . , ZM }, if M ≥ 1,
(9)

S∗F (t) =
1

1− p0

∞∑
m=1

Sma (t)f
M
(m) (10)

and

SpF (t) =
∞∑
m=0

Sma (t)f
M
(m) = g

M
(Sa(t)), (11)

where g
M

is the probability generating function of M .

The promotion model is obtained from this scheme when M follows a Poisson distribution.

Recently new cure rate models of this activation scheme have appeared in the literature. For

instance in Cancho et al. (2011a) and Rodrigues et al. (2009) the Weibull distribution is

considered for the time of activation and for the distribution of M the power series is considered

in Cancho et al. (2011a), while Rodrigues et al. (2009) considers the COM-Poisson.
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On the other hand, non-cure rate models obtained without using the theory of latent risk

factors can also be considered as particular cases of the first activation scheme by taking for

the number of risk factor, the geometric, the Poisson, the logarithmic and the power series

distributions truncated in zero (see e.g., Adamidis & Loukas (1998), Kus (2007), Tahmasbi &

Rezaei (2008) and Chahkandi & Ganjali (2009), Morais & Barreto-Souza (2011)).

2.2 The last-activation scheme

In this case K = M ; that is, the last activation leads to observed the event of interest. Thus

the time to-event, the survival function of the susceptible individuals, S∗L(t), and the survival

function of the entire population, SpL(t), where L denotes the last activation, become

T =

{
∞, if M = 0,

Z(M) = max{Z1, . . . , ZM }, if M ≥ 1,
(12)

S∗L(t) = 1− 1

1− p0

∞∑
m=1

Fma (t)f
M
(m). (13)

and

SpL(t) = 1 + P (M = 0)− g
M

(Fa(t)). (14)

Recently new cure rate models of this activation scheme have appeared in the literature.

For instance in Cancho et al. (2011a) the Weibull distribution is considered for the times of

activation and the power series distribution for M . On the other hand, non-cure rate models

obtained without using the theory of latent risk factors can also be considered as particular

cases of the first activation scheme by taking the exponential and the Weibull distribution for

the times of activation and for the number of risk factor, the geometric, the Poisson, and the

power series distributions truncated in zero (see e.g., Adamidis et al. (2005), Cancho et al.

(2011b) and Flores et al. (2011)).

2.3 The uniform random-scheme

In this case, the conditional distribution of K given M = m is uniform on {1, . . . ,m}, that is,

the kth activation leads to observe the event of interest with probability 1/m for k = 1, . . . ,m.

Thus the survival function of the susceptible individuals, S∗R(t), and the survival function of the

entire population, SpR(t), where R denotes the uniform random activation, become

S∗R(t) = Sa(t) (15)
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and

SpR(t) = p0 + (1− p0)Sa(t), (16)

Notice that, in this case, the distribution of M only affects the determination of the cure rate

p0 = P (M = 0).

Corollary 2 establishes the stochastic order between the survival functions of these activation

scheme. This result is not given in Cooner et al. (2007).

Corollary 2. Inequalities (17) and (18) hold for every distribution of M

S∗F (t) ≤ Sa(t), Sa(t) ≤ S∗L(t) (17)

and

S∗pF (t) ≤ Sa(t), Sa(t) ≤ S∗pL(t). (18)

Proof. The inequalities given in (17) follow from (10) and (13) and (18) follows immediately

from (17).

A similar result is given in Kim et al. (2011), where K and M are independents and the time

to-event T is equal to infinity, if M < K, and is Z(K) if M ≥ K.

3 Derivation of the model

Assume that in the model with latent risk factors, developed in Section 2, M follows a power

series distribution, that is, its probability function is given by

f
M
(m) = P (M = m) =

amθ
m

C(θ)
, m = 0, 1, 2, . . . ; θ ∈ Θ, (19)

where a0, a1, a2, . . . is a sequence of non-negative real numbers, where at leats one of them is

strictly positive, Θ = (0, s), where s is a positive number no greater than the ratio of convergence

of the power series
∞∑
m=0

amθ
m, and C(θ) =

∞∑
m=0

amθ
m, ∀ θ ∈ (0, s). Notice, in particular, that C

is positive and infinitely many differentiable. The cure rate is given by p0 = P (M = 0) = a0
C(θ)

and the probability generating function is g(s) = C(θ s)
C(θ) , if sθ ∈ Θ. The Poisson, geometric and

logarithmic distributions, among others, are particular cases of this distribution. These cases

will be considered in this paper and are showed in Table 1.
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Table 1: Particular cases of the power series distribution

Distribution f
M
(m) am C(θ) Θ p0

Poisson
e−θθm

m!
,m = 0, 1, 2, . . . 1

m! eθ (0, ∞) e−θ

Geometric θm(1− θ) , m = 0, 1, 2, . . . 1 (1− θ)−1 (0, 1) 1− θ

Logarithmic
θm+1

−(m+ 1) log(1− θ)
, m = 0, 1, 2, . . . 1

m −log(1− θ) (0, 1) −θ/log(1− θ)

Observe that in each case the power series converges to θ ∈ Θ.

Moreover, it will be assumed that the times of activations follow the two-parameter

generalized exponential (GE) distribution with parameters λ > 0 and α > 0, introduced by

Gupta & Kundu (1999). The failure rate function of this distribution is similar to the Weibull

distributions, its cumulative probability, survival and density functions are given for all t > 0 by

Fa(t) = (1− e−λt)α, (20)

Sa(t) = 1− (1− e−λt)α (21)

and

fa(t) = αλe−λt(1− e−λt)α−1, (22)

respectively. With these assumptions the cure rate models derived with the first, the last and

the uniform-random schemes will be denoted by GEPSF, GEPSL and GEPSR, respectively.

The survival functions of these models are obtained by (11) (14) and (16) and are given by

SpF (t) =
C(θSa(t))

C(θ)
, (23)

SpL(t) = 1 +
a0
C(θ)

− C(θ(1− Sa(t))
C(θ)

(24)

and

SpR(t) =
a0
C(θ)

+ (1− a0
C(θ)

)Sa(t), (25)

respectively. Notice that θSa(t) < θ < s and θ(1− Sa(t)) < θ < s.

When the Poisson distribution is considered the cure rate models derived with the first, the

last and the uniform-random schemes are denoted by GEPF, GEPL and GEPR, respectively.
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Similarly when the geometric distribution is considered the cure rate models derived with the

first, the last and the uniform-random schemes are denoted by GEGF, GEGL and GEGR,

respectively. Finally when the logarithmic distribution is considered the cure rate models for

these schemes are denoted GELF, GELL and GELR, respectively. The survival function of these

models are obtained by replacing the associate C(θ) and a0, given in Table 2, in the equations

(23), (24) and (25). Now, as in Cancho et al. (2011a), the cure rate p0 is incorporated in

these functions by the reparametrization θ = C−1(a0/p0). Thus, for the Poisson, geometric and

logarithmic distributions θ becomes − log(p0), 1−p0 and 1+p0W (−p0e−1/p0), respectively, where

W (·) stands for the Lambert W function (Corless et al., 1996). With this reparametrization

the survival and density extended function of these models are given in Table 2, as reported in

Cancho et al. (2011a).

Table 2: Survival function (Sp) and density function (fp) for some models

Model Sp(t) fp(t)

GEPF p
Fa(t)
0 − log(p0)p

Fa(t)
0 fa(t)

GEPL 1 + p0 − pSa(t)
0 − log(p0)p

Sa(t)
0 fa(t)

GEPR p0 + (1− p0)Sa(t) (1− p0)fa(t)

GEGF {1 + (p−10 − 1)Fa(t)}−1
p−10 − 1

{1 + (p−10 − 1)Fa(t)}2
fa(t)

GEGL 1 + p0 − {1 + (p−10 − 1)S(y)}−1 p−10 − 1

{1 + (p−10 − 1)Sa(t)}2
fa(t)

GEGR p0 + (1− p0)Sa(t) (1− p0)fa(t)

GELF − log(1−W0Sa(t))

W0Sa(t)
p0

W0Sa(t) + {1−W0Sa(t)} log(1−W0Sa(t))

{1−W0Sa(t)}W0Sa(t)2
p0fa(t)

GELL 1 + p0 +
log(1−W0Fa(t))

W0Fa(t)
p0

W0Fa(t) + {1−W0Fa(t)} log(1−W0Fa(t))

{1−W0Fa(t)}W0Fa(t)2
p0fa(t)

GELR p0 + (1− p0)Sa(t) (1− p0)fa(t)
Remark. W0 = 1 + p0 W (−e−1/p0/p0), where W (·) is the Lambert W function (Corless et al., 1996).

The functions fp(t) and Sp(t) have three parameters, α, λ and p0. Thus for all t > 0, α > 0

λ > 0 and p0 ∈ (0, 1), will be defined

fp(t,γ, p0) = fp(t, α, λ, p0) = fp(t)

Sp(t,γ, p0) = Sp(t, α, λ, p0) = Sp(t),
(26)

with γ = (α, λ)>.
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As mentioned in Section 1, the cure rate for the ith individual in a sample of size n is

given by a logistic regression between p0 and the covariates as given in equation (2). Under

this link function the models are identifiable in the sense of Li et al. (2001). In this case the

models generated by the uniform-random scheme are equals to the exponential cure rate model

proposed by Kannan et al. (2010), that is, GEPR=GEGR=GELR=GE.

4 Inference

Let us consider that for the i -th individual, in a sample of size n, it is observed ti = min{Ti, Ci}
and δi = I(Ti ≤ Ci), where Ti is the time to-event, Ci is the censoring time and I(Ti ≤ Ci) is

the indicator function.

Let ψ> = (γ>, β>) be the model vector parameters and Ψ ⊂ R2+ × Rk the parametric

space. The likelihood associated with (t1, δ1,x1), . . . , (tn, δn,xn) can be written by

L(ψ;D) =
n∏
i=1

fp(ti,γ, p0i)
δi Sp(ti,γ, p0i)

1−δi , (27)

whereD = (t, δ,X), t = (t1, . . . , tn)>, x = (x1, . . . ,xn)>,X = (x>1 , . . . ,x
>
n), δ = (δ1, . . . , δn)>,

fp( · , · , · ) and Sp( · , · , · ) are the extended density and survival functions in equations (26).

The log-likelihood associated with D can be written as

`(ψ) =
n∑
i=1

[ δilog(fp(ti;γ, p0i)) + (1− δi)log(Sp(ti;γ, p0i)) ], (28)

The maximum likelihood estimation is obtained by direct maximization of (28)) via the BBoptim

function of the R program (R Development Core Team, 2011). The Lambert W function in Table

2 can be found in the R package emdbook. Under suitable regularity conditions it can be shown

that the asymptotic distribution of the maximum likelihood estimator ψ̂ is multivariate normal

(see details in Lawless (2003)) with mean vector ψ and covariance matrix Σ(ψ̂), which can be

estimated by Σ̂(ψ̂) = −L̈
−1

(ψ̂), the observed information matriz, that is,

L̈(ψ) =
∂2`(ψ)

∂ψ∂ψ>
. (29)

5 Sensitivity analysis

This section outlines a methodology to perform a sensitivity analysis.
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5.1 Global influence

To analyse the influence of observations on the parameters estimates it is common to use the

case-deletion approach (see Cook (1977)) which measures the effect of removing the ith sample

case.

Let `(i) be the log-likelihood function when the ith sample case is removed. Then, by (28)

`(i)(ψ) =
∑

j∈{1,...,n}−i

[ δilog(fp(ti;γ, p0i)) + (1− δi)log(Sp(ti;γ, p0i)) ], (30)

where subscript “(i)” means the original quantity with the ith case deleted. Let ψ̂(i) =

(γ̂>(i), β̂
>
(i))
> denote the maximum estimate of `(i)(ψ). Thus, the ith case is regarded as an

influential observation if the difference between ψ̂(i) and ψ̂ is large.

Since ψ̂(i) must be calculated for the n cases, the following approximation, given in Cook &

Weisberg (1982), is used to simplify the computational time:

ψ̂(i) ≈ ψ̂ − L̈
−1

(ψ̂) ˙̀
(i)(ψ̂), (31)

where ˙̀
(i)(ψ̂) is the derivative

∂`(i)(ψ)

∂ψ evaluated at ψ = ψ̂.

By substituting in (31) the decompositions

˙̀
(i)(ψ̂) =

 ∂`(i)(ψ̂)

∂γ
∂`(i)(ψ̂)

∂β

)
 (32)

and

−L̈
−1

(ψ̂) =

[
Aγ Aγβ

A>γβ Aβ

]
(33)

the following approximations are obtained:

γ̂(i) ≈ γ −
(
Aγ

∂`(i)(ψ̂)

∂γ
+Aγβ

∂`(i)(ψ̂)

∂β

)
(34)

β̂(i) ≈ β −
(
Aβ

∂`(i)(ψ̂)

∂β
+A>γβ

∂`(i)(ψ̂)

∂γ

)
(35)

Usual measures for the difference between ψ̂(i) and ψ̂ are detailed in the following subsection.

5.1.1 With The generalized Cook distance

A measure for the difference between ψ̂(i) and ψ̂, denoted by GDi, is the following generalized

Cook distance

GDi = (ψ̂(i) − ψ̂)>
(
-L̈(ψ̂)

)
(ψ̂(i) − ψ̂). (36)
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Since ψ̂> maximises the log-likelihood function, -L̈ is positive definite and GDi is, indeed, a

mathematical distance. Thus, the distance between ψ̂(i) and ψ̂ is a measure of the influence of

the ith sample case on the vector of parameters estimates. Equation (31) gives the following

approximation for this distance

GDi ≈ ˙̀
(i)(ψ̂)>

(
-L̈
−1

(ψ̂)
)

˙̀
(i)(ψ̂). (37)

Now, following in Li et al. (2012), some measures of the influence of the ith sample case on sub

vector of parameters estimates γ̂ and β̂ are derived. By substituting (34) and (35) in (37) is

follows

GDi ≈
∂`(i)(ψ̂)

∂γ

>

Aγ
∂`(i)(ψ̂)

∂γ
+ 2

∂`(i)(ψ̂)

∂γ

>

Aγβ
∂`(i)(ψ̂)

∂β
+
∂`(i)(ψ̂)

∂β

>

Aβ
∂`(i)(ψ̂)

∂β
.

From this approximation, the following quantities

GDi(γ) ≈
∂`(i)(ψ̂)

∂γ

>

Aγ
∂`(i)(ψ̂)

∂γ
(38)

and

GDi(β) ≈
∂`(i)(ψ̂)

∂β

>

Aβ
∂`(i)(ψ̂)

∂β
, (39)

are considered measures of the influence of the ith sample case on the estimates γ̂ and β̂,

respectively.

5.1.2 With the likelihood displacement

The likelihood displacement of ψ̂(i) with respect to ψ̂ is given by

LDi = 2{`(ψ̂)− `(ψ̂(i))}. (40)

Since ψ̂> maximises the log-likelihood function LDi is non-negative but it is not a mathematical

distance. As emphasized in Cook (1986), this measure is extensively used because of its large

sample properties, for instance one of these establishes that

{ψ : 2[ `(ψ̂)− `(ψ) ] < χ2 },

is a confidence region for ψ, where χ2 is a value of a chi-squared distribution with k+ 2 degrees

of freedom. Since

LD(ψ) ≈ (ψ − ψ̂)>
(
-L̈(ψ̂)

)
(ψ − ψ̂),

in a neighborhood of ψ̂, then

LDi ≈ GDi, (41)

whenever ψ̂(i) is closed to ψ̂, as observed in Li et al. (2012).
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5.2 Local influence

A different approach to perform a sensitivity analysis considers the effect of small perturbations

in the model or in the data according to a particular scheme. This approach, which is called Local

influence, was proposed by Cook (1986) for the linear regression model and later it was extended

to more general model as described in Escobar & Meeker (1992). Let w = (w1, . . . , wn) be the

vector of numbers that quantifies the perturbation and `W (ψ,w) the associated log-likelihood

function, where ψ ∈ Ψ and w ∈ Ω, an open subset of Rn. It is assumed that there exists w0

such that no perturbation occurs when w = w0. Thus, `W (ψ,w0) = `(ψ) and ψ̂ maximizes

`W ( · ,w0).

The log-likelihood displacement function, LDW, is defined by

LDW (w) = 2{`(ψ̂)− `(ψ̂w)}, (42)

where ψ̂w maximizes `W ( · ,w). As pointed out in Cook & Weisberg (1982), large values of

LDW indicate that ψ̂ and ψ̂W differ considerably relative to the contours of the unperturbed

log-likelihood `(ψ). Cook (1986) states that the graph of the surface (w, LDW (w)) contains

essential information on the influence of the perturbation scheme in question. In order to measure

this influence he uses curvatures as follows.

The curvature of LDW, in the direction of the unit vector h, evaluated in w0 is given by

Ch =
∂2LD(w0 + ah)

∂a2
= 2h>Äh, (43)

where

Ä = −∂
2L(ψ̂w, w0)

∂w∂w>
. (44)

From (43) the maximum curvature, Cmax, is obtained when h is the eigenvector, hmax, associated

with the largest eigenvalue of Ä. Thus, hmax = (hmax1 , . . . ,hmaxn)> indicates how to perturb

the model or data to obtain the greatest local change in LDW. According to Cook (1986), the

plot of (i, hmaxi), i = 1, . . . , n, identifies potential influential cases and hmaxi > 2 can be used

as a benchmark to indicate that the ith observation is influential.

Other benchmarks from which an observation can be considered influential are given next.

Let ui ∈ R
n be the vector of zeros whit a single 1 in the ith position, Ci = 2Aii the

curvature associated with ui and M(0)i = Ci/
k+2∑
j=1

λj , i = 1, . . . , n, where λ1 ≥ · · · ≥ λk+2

be the k + 2 positive eigenvalues of 2Ä. Let M̄(0) and SM(0) denote the sample mean and

the standard deviation of M(0)1, . . . ,M(0)n, respectively. Notice that M̄(0) = 1/n, because
k+2∑
j=1

λj = trace(2Ä). The plot of (i,M(0)i), i = 1, . . . , n, is another graphical way to identify

possible influential cases. Poon & Poon (1999), Zhu & Lee (2001) and Escobar & Meeker (1992)
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proposed the benchmarks M(0)i > 2/n, M(0)i > 1/n + 2SM(0) and M(0)i > χ2
0,5;k+2/

k+2∑
j=1

λj ,

respectively, to indicate that the ith observation could be considered influential.

Thus, the matrix Ä is key to carry out the analysis of local influence. The following identity,

given by Cook (1986), is used to facilitate the calculation of Ä :

Ä = ∆>(−L̈(ψ̂) )−1∆, (45)

where

∆ =
∂2`W (ψ̂, w0)

∂ψ∂w>
. (46)

Hence it is important to calculate the matriz ∆.

5.2.1 Perturbation schemes

The perturbation schemes for the model and data, used in this paper, are described bellow.

Some identities to obtain the matrix ∆ are derived.

a) Weight perturbation. In this case, the vector w = (w1, . . . , wn), used to quantify the

perturbation, affects the log-likelihood function as follows

`W (ψ,w) =

n∑
l=1

[wlδllog(fp(tl,γ, p0l)) + wl(1− δl)log(Sp(tl,γ, p0l)) ], (47)

where 0 ≤ wi ≤ 1. The non-perturbation vector is w0 = (1, . . . , 1)>.

Since ∂2`W (ψ,w)
∂ψj∂wi

= ∂
∂ψj

GWi(ψ), with

GWi(ψ) = δilog(fp(ti,γ, p0i)) + (1− δi)log(Sp(ti,γ, p0i)). (48)

The computational calculation of ∆ is directly from the jacobian of GW (ψ) =

(GW1(ψ), . . . , GWn(ψ)), that must be evaluated in ψ̂.

b) Perturbation of responses. In this case the perturbation is originated in the responses,

ti, from ti +wisT , i = 1, . . . , n, where w = (w1, . . . , wn) is the vector used to quantify the

perturbation and sT is a scale factor estimated by the standard deviation of responses.

The non-perturbation vector is w0 = (0, . . . , 0)>.

The perturbed log-likelihood function is given by

`W (ψ,w) =
n∑
l=1

[ δllog(fp(tl + wlst,γ, p0l)) + (1− δl)log(Sp(tl + wlst,γ, p0l)) ] (49)
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From this equation it follows that ∂
∂wi

`W (ψ,w0) = GRi(ψ), where

GRi(ψ) = sT

{ δi ∂∂tfp(ti + sT ,γ, p0i)

fp(ti + sT ,γ, p0i)
− (1− δi)fp(ti + sT ,γ, p0i)

Sp(ti + sT ;γ, p0i)

}
. (50)

The computational calculation of ∆ is directly from the jacobian of GR(ψ) =

(GR1(ψ), . . . , GRn(ψ)), that must be evaluated in ψ̂.

c) Perturbation of the explanatory variables. In this case, the perturbation is originated

in one of the covariates. If (x1ko , . . . , xnko) is the vector of the values of Xko in the sample,

then the perturbed vector of values is (x1ko + w1sXko
, . . . , xnko + wnsXko

), where sXko

is the standard deviation of the observed values of this covariate. The vector of no-

perturbación is w0 = (0, . . . , 0)>. Let xwi be the vector obtained when the koth entry

in xi = (xi1, . . . , xik)
> is substituted by xiko + wisXko

, and pw0i = exp(xwi
>β)

1+exp(xwi
>β)

, for

i = 1, . . . , n. Thus, the perturbed log-likelihood function is given by

`W (ψ,w) =

n∑
l=1

[ δllog(fp(tl,γ, pw0l)) + (1− δl)log(Sp(tl,γ, pw0l)) ]. (51)

Since

pw0i =
exp(xi

>β) exp(wisXko
βko)

1 + exp(xi>β) exp(wisXko
βko)

, (52)

then

∂

∂wi
`W (ψ,w) =

∂

∂wi
{ δilog(fp(ti,γ, pw0i)) + (1− δi)log(Sp(ti,γ, pw0i)) } (53)

and, by the chain rule,
∂

∂wi
`W (ψ,w0) = GEi(ψ), (54)

where

GEi(ψ) =
sXko

βko exp(−xi>β)(
1 + exp(−xi>β)

)2 { δi ∂∂pfp(ti,γ, p0i)fp(ti,γ, p0i)
+

(1− δi) ∂∂pSp(ti,γ, p0i)
Sp(ti,γ, p0i)

}
. (55)

The computational calculation of ∆ is directly from the jacobian of GE(ψ) =

(GE1(ψ), . . . , GEn(ψ)), that must be evaluated in ψ̂.

6 Application

To illustrate the results of this paper the data set considered by Cancho et al. (2011a) is

reanalysed. The data set includes 205 patients observed after operation for removal of malignant

melanoma in the period 1962–77. These data are available in the timereg package in R (Scheike,
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2009). The observed time (T ) ranges from 0.0274 to 15.25 years and refers to the time until

the patient’s death or the censoring time. Patients dead from other causes, as well as patients

still alive at the end of the study are censored observations (72%). The covariates considered

are X2 = ulceration status (present=1, n = 90; absent=0, n = 115), X3 = tumor thickness

(in mm, mean = 2.92 and standard deviation = 2.96), X4 = age (in years, mean= 52,46 and

standard deviation = 16,67) and X5 = sex (male=1, female=0), with coefficients β2, β3, β4 and

β5, respectively, and β1 denotes the intercept. The Kaplan-Meier estimated of the surviving

function (see Figure 1) levels off above 0.6 and the presence of a plateau indicates that the

models that ignore the possibility of cure does not fit for these data. Therefore, the dataset

may be fitted by a cure rate model with covariates, in particular, the GE-PS cure rate models

GEPF, GEPL, GEGF, GEGL, GELF, GELL and GE, given in Table 2, are used.

Figure 1: Kaplan-Meier estimate of the surviving function.

6.1 Fitting models and parameter estimation

The maximum likelihood estimation for the vector parameters, ψ = (α, λ, β1, β2, . . . , β5), is

obtained by direct maximization of (27) or (28) via the BBoptim function of the R program

(R Development Core Team, 2011). Table 3 presents the maximum values of the log-likelihood

function (l(·)), the estimated AIC and BIC criteria considering the all fitted distributions.
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Table 3: AIC and SBC for the fitted models.

Model l(·) AIC SBC

GEPF -205,3233 424,6466 421,29262

GEGF -203,0158 420,0316 416,6776

GELF -200,9897 415.9794 412,6254

GEPL -212,0622 438,1244 434,77042

GEGL -214,9450 443,8900 440,53602

GELL -217,0028 448,0056 444,65162

GE -208,1857 430,3714 427,01742

According to the AIC and SBC criteria, the GELF cure rate model outperforms its

concurrent distributions in both considered criteria. Table 4 shows the maximum likelihood

estimates (MLE), the standard errors estimates (SEE) by the observed Fisher information

matrix and the 95% confidence intervals for the parameters of the all fitted distributions. All the

covariates, except the age, have a significant effect on the determination of the cured fraction.

Table 4: MLE and SEE of the parameters for the GELF model.

Parameter Estimate (est) Standard error (se) |est| / se 95% IC

α 2,9685 0,6079 4,8835 (1,7771; 4,1598)

λ 0,2227 0,0846 2,633 (0,0569; 0,3885)

β1 1,8318 0,625 2,9311 (0,6069; 3,0567)

β2 -1,3875 0,3147 4,4091 (-2,0043; -0,7707)

β3 -0,1141 0,0343 3,3254 (-0,1814; -0,0469)

β4 -0,0041 0,0077 0,5302 (-0,0192; 0,011)

β5 -0,6083 0,2735 2,2245 (-1,1443; -0,0723)

6.2 Sensitivity analysis

In this subsection a sensitivity analysis is made for the GELF proposed model, according to

Section 5. The measures of global and local influence ware calculated.

6.2.1 Global influence

To measure the influence of the ith sample case on the vector of parameters estimates it is

calculated the case-deletion measuresGDi and LDi described in Subsection 5.1. Theses measures

are similar, as shown in Figure 2. This similarity suggests that the removing of the ith sample
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case does not affect significantly the estimation of the parameters, as pointed out in (41). Notice

from the figure that since the cases 5, 6, 7, 10, 11, 13, 15 and 29 are above of the benchmark

they are the most influential.

Figure 2: Index plot of case-deletion measures. Left panel: the generalized Cook’s distance

(GCi). Right Panel: The likelihood distance (LDi).

Influence measures on the estimation of sub-vectors γ = (α, λ), the parameters of time

activation, and β, the coefficients of regression, were also calculated and illustrated in Figure

3. Notice from the figure that since the cases 5, 6, 7, 10, 11, 26, 29 and 31 are above of the

benchmark they are the most influential.

Figure 3: Index plot of case-deletion measures for the subvectors parameters. Left panel: the

generalized Cook’s distance GCi(γ). Right Panel: the generalized Cook’s distance GCi(β).
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6.2.2 Local influence

The influence measures given in subsection 5.2 will be calculated under the perturbation schemes.

Case weight perturbation. The value Cmax = 2, 8160 is a maximum curvature. The possible

influential cases are indicated by the plots in Figure 4.

Figure 4: Index plot of local influence measures with the weight perturbation scheme. Left

panel: Direction of maximum curvature, hmax. Right Panel: M(0)i.

Perturbation of responses. The value Cmax = 54, 7037 is a maximum curvature. As shown

in Figure 5, the cases 5, 6, 7, 9 and 10 would be the most influential.

Figure 5: Index plot of local influence measures with the weight perturbation scheme for

responses. Left panel: Direction of maximum curvature, hmax. Right Panel: M(0)i.
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Perturbation of explanatory variable thickness. The value Cmax = 81, 7252 is a maximum

curvature. The plots in Figure 6 suggests that the cases 5, 6, 7, 9, 10, 19, 21 and 35 are the

most influential.

Figure 6: Index plot of local influence measures with the perturbation scheme for the covariate

thickness. Left panel: Direction of maximum curvature, hmax. Right Panel: M(0)i.

Perturbation of explanatory variable age. The value Cmax = 1, 0305 is a maximum

curvature. The plots in Figure 7 suggests which cases are the most influential.

Figure 7: Index plot of local influence measures with the weight perturbation scheme. Left

panel: Direction of maximum curvature, hmax. Right Panel: M(0)i.
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In conclusion, according to the sensitivity analysis performed, the subset of potentially

influential cases is I = {5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 19, 21, 26, 29, 35, 43, 72, 111, 149}.

6.2.3 Impact of the detected influential observations

Each one of the cases in I is removed and then proposed model is refitted. To measure the impact

of this removing on the estimation of ψi let us consider the following relative rate changes (rce):

rce(ψi) = 100(ψ̂i − ψ̂(i))/ψ̂i,

and the standard error estimate (rcse)

rcse(ψi) = 100(ŝeψi
− ŝeψ(i)

)/ŝeψi
,

These quantities are shown in Table 5. Considerables rates changes only occur in the estimates

of the regression coefficient β4, associated with the covariate age. Since this covariate is removed

from the model because is not significant, then the proposed model seems not to be sensitive to

the influential observations.

Table 5: Relative changes in the estimates (rce) and in the standard error estimates (rcse) of parameters

α λ β1 β2 β3 β4 β5

Case rce rcse rce rcse rce rcse rce rcse rce rcse rce rcse rce rcse

5 0,5 1,1 0,5 2,1 1 0,3 0,7 0,6 10,8 4,5 27,4 1,7 4,6 0,5

6 7,9 12,2 6,5 1,1 10,3 1,3 1,1 0,1 5,3 1,7 76,6 0,4 4,1 1,9

7 8,2 13,4 9,6 1,4 6,1 4,3 0,9 0,5 9,1 0,6 77,8 1,6 6,2 0,8

9 2,8 2,1 4,6 1,8 1,7 3,8 0,9 0,1 6 10,3 13,7 2,4 2,7 0,4

10 5,8 9,3 3,5 0,4 0,8 1,0 1,0 0,1 1,0 1,5 26,3 0,9 16,8 0,6

11 6,3 9,3 3,2 0,5 2,8 0,0 1,4 0,1 2,2 1,0 5,7 0,6 13,6 0,2

13 3,7 5,8 0,8 0,3 1,8 0,4 2,0 0,1 2,1 0,8 25,6 0,6 11,4 0,1

14 0,3 1,5 1,3 0,5 3,6 0,6 2,3 0,0 2,5 1,8 18,7 1,2 6,8 0,4

15 1,8 2,7 2,6 0,3 8,0 3,6 2,8 0,4 0,1 0,0 73,7 1,5 9,2 0,9

17 2,3 1,6 4,1 0,4 0,8 2,5 2,2 0,1 0,9 1,4 15,6 0,5 5,4 0,4

19 2,6 1,6 3,8 1,7 5,5 5,5 1,4 0,3 0,3 2,5 30 11,7 3,8 0,8

21 2,8 1,7 4,9 2,2 0,6 5,6 0,8 0,1 0,8 6,5 18,3 4,5 6,2 5,2

26 0,5 0,6 2,9 0,1 0,0 3,0 4,3 1,9 0,7 0,2 21,1 0,3 4,5 0,7

29 0,8 1,2 5,3 0,7 7,6 6,7 4,2 1,8 4,3 0,3 57,3 0,9 5,6 0,8

35 3,3 1,9 5,0 3,2 2,2 3,6 2,0 6,5 5,4 8,3 4,5 0,5 2,7 0,1

43 0,4 1,7 2,2 1,9 1,4 0,1 0,2 0,0 9,5 4,3 1,4 2,1 10,2 1,8

72 1,2 0,3 0,4 2,0 1,4 0,0 3,5 2,4 2,4 1,6 37,0 2,5 5,8 1,0

111 0,4 0,8 3,3 2,0 1,8 1,3 3,1 2,5 2,5 1,4 20,0 2,3 4,1 1,3

149 2,1 3,7 9,8 2,3 4,4 4,0 3,0 2,8 4,8 1,4 23,8 4,1 1,9 2,0
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6.3 Final model and goodness of fit

In Table 6 are listed the estimates of the parameters of GELF cure rate model, with their

estimates standard errors and the 95% confidence intervals. The covariates ulceration status,

X2, tumor thickness, X3, and sex, X5, have a significant effect on the cured fraction. The

proportion of patients cured is lower for patients with ulceration than for those without it. The

covariate tumor thickness has a significant effect on the reduction of the cured fraction. The

proportion of people cured is greater for the woman than for the men. The estimated cure rate

for the ith individual is given by

p̂0i =
exp(1, 6351− 1, 3947xi2 − 0, 1174xi3 − 0, 6014xi5)

1 + exp(1, 6351− 1, 3947xi2 − 0, 1174xi3 − 0, 6014xi5)
,

where xi1, xi2 and xi5 are the associated values of covariates ulceration, thickness and sex,

respectively. An estimation for the cure rate in the entire population of individuals is given by

p̂0 =
1

205

205∑
i=1

p̂0i = 0, 5948.

Table 6: Maximum likelihood estimates of the parameters for the GELF model.

Parameter Estimate (est) Standard error (se) 95% IC

α 2,9844 0,6133 (1,7824; 4,1864)

λ 0,2262 0,0851 (0,0595; 0,3930)

β1 1,6351 0,4849 (0,6847; 2,5855)

β2 -1,3947 0,3152 (-2,0125; -0,7770)

β3 -0,1174 0,0337 (-0,1835; -0,0514)

β5 -0,6014 0,2725 (-1,1356; -0,0673)

Figure 8 shows the fitted survival function superimposed to the empirical survival function.

It can be seen that the fitness is good.

Figure 8: Kaplan-Meier estimate of the surviving function.

22



7 Concluding remarks

In this report the theory of models with latent risk factors under activation schemes, introduced

by Cooner et al. (2007), was described and new results based on it were given. A new family of

cure rate models with covariates called the generalized exponential-power series was derived by

applying this theory. In addition the procedure to perform a sensitivity analysis for general

models was summarized. Analytical expressions were provided to facilitate computational

required to accomplish the analysis of local influence. To show the flexibility and potential

of this family as a cure rate model, particular cases of this family to a real data set were fitted.

For the best fitted model to the data, a sensitivity analysis was performed including diagnostic

measures based on case-deletion and local influence approaches. This sensitivity analysis showed

the robustness of the model against influential observations.
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