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Abstract

This report presents a new family of cure rate models derived from a scenario with latent
risk factors under different activation schemes that would lead to the occurrence of the
event of interest. It is considered that the times of activation of the latent factors follow a
generalized exponential distribution, while the number of this factors follows a power series
series distribution. These models incorporate explanatory variables related with the cure
rate through logistic regression. A sensitivity analysis including diagnostic measures based
on case-deletion approaches and local influence is performed. To illustrate the results of this

paper an example with real data is presented.

1 Introduction

The mixture cure rate model was proposed by Boag (1949) to considerer the possibility that a
population may be have: immune (or cured) and susceptible (or no cured) individuals in regard
to some event of interest. In this model the survival function, Sy(t), for the entire population
of individuals is given by

Sp(t) = po + (1 —po)S(t), (1)

where S(t) is the survival function of the susceptible individuals and py = Sp(00) is the fraction
of the immune individuals (cured rate). This model has been studied by several authors, for
example, Farewell (1982) assumes that the cure rate for the ith individual in a sample of size n

is given by a logistic regression between pg and the covariates as follows

_ exp(zi ' B)
Poi

 14exp(x; ' 8)] (2)

where x; = (z41,...,%) " is a covariate vector and 3 = (31,...,8%)" is a vector parameter.



For the survival function S(t) the exponential, the gamma, and the Weibull distributions are
commonly used.

Alternative cure rate models, known in the literature as The Bounded Cumulative Hazard
Model or The Promotion Time Cure Model, were proposed by Yakovlev et al. (1993), Yakovlev
& Tsodikov (1996), Tsodikov (1998) and Chen et al. (1999). These models introduced the well
known concept of promotion or activation to explain the time to-event.

Extensions of the promotion model have been proposed in the literature, see e.g., Cancho &
Bolfarine (2001), Rodrigues et al. (2009), Hashimoto et al. (2012) and Ortega et al. (2009).

The promotion time cure model was generalized by Cooner et al. (2007), developing a theory
where the event of interest occurs due to latent risk factors according to different activation
schemes. For example, the first activation scheme, that is, the event of interest occurs when
the first risk factor is activated, and the last activation scheme occurs when all risk factors have
been activated. The models presented in this work consider the first and last activation schemes
and assume the logistic regression given in (2), for the cure rate, and the generalized exponential
distribution, for the survival function S(t).

The remaining of this paper is organized as follows. In Section 2 the theory of models with
latent risk factors under activation schemes, introduced by Cooner et al. (2007), is described and
new results based on it are given. Under the first and last activation schemes, two new cure rate
models with covariates are derived in Section 3. These new models also can be derived from
the approach developed by Cancho et al. (2011a) and will be called generalized exponential-
power series cure rate models (EG-SP). Inference methods based on the likelihood is described
in Section 3. In Section 4 a sensitivity analysis of the model is given. To illustrate the results
of this paper an example with real data is presented in Section 6. Finally some conclusions are

provided in Section 7.

2 Models with latent risk factors

The models with latent risk factors according to activation schemes introduced by Cooner et al.

(2007) are defined by the following assumptions

(s1) Let M be a discrete random variable taking values in the set of the natural numbers and
probability function f such that P(M = 0) < 1. M represents the number of latent risk

M
factors that lead to the occurrence of the event of interest. Let pg = P(M = 0) denote the

probability of absence of risk factors.

(s2) Let K be a discrete random variable taking values in the set of the natural numbers and



such that P(1 < K < M|M = m) = 1, for m = 1,2,... This variable represents the

minimum number of factors that must be activated for the event to occur.

(s3) Let { Z1, Zs ...} be a sequence of independent, identically distributed, continuous random
variables, independent of M, with common cumulative probability function F, and survival

function S,. These random variables represent the times of activation of the latent factors.

(s4) The time to-event of interest is defined by the extended random variable

0, if M =0,
T:{ . (3)
Z(K)7 if M > 1,

where Z(l) < o < Z(K) < 0 < Z(M) are the ordered statistics of the variables
Z1,...,Zy. Thus when there aren’t latent risk factors 71" is equal to infinity, otherwise

it is equal to the time until K out of M risk factors are activated.
An expression for the survival function of T', Sy, is given in the following theorem.

Theorem 1. Under the assumptions (s1)-(s4) the survival function of T is given by

Sp(t) = po+ (1 —po)S*(t), parat >0, (4)
where
Sty =——> > > < >SJ( )L = Sa(®)]" 7 P(K = k|M =m)f (m).  (5)
L=po S i ekt M

Furthermore the series in (5) converges uniformly. Also S* satisfies the usual properties of a

survival function associated to a positive continuous random variable, that is,
i) S* is a continuous function,
ii) S* is a decreasing function,

iii) lim S*(t) =1 and tlim S*(t) = 0.
—00

t—0t

These properties are satisfied by Sy, except that in iii) tlim S(t) = po.
—00

Notice that S* corresponds to the survival function of the susceptible individuals. Equation
(5) is equivalent to equation (2) in Cooner et al. (2007). It is worth to mention that this
equivalent form and the uniform convergence facilitate the study of the properties of S(t) as

well as it helps to generate new survival functions.



Proof. Since Sy(t) = P(T > t), then
S,(t)=P(T>t,M=0)+P(T>t,M>1)=P(M=0)+P(T>tM>1).  (6)
On the other hand,

P(T>t,M>1) = P(Zyy>t,M>1)

in the last equation yields

PT>tM>1)=> > Y (’;) ST — S, P(K =kIM =m)f (m). (8)

M
m=1 k=1 j=m—k+

Then, (5) follows from (6) and (8).
The uniform convergence in (5) follows from the Weierstrass criterion by observing that

|S*(t)| < f (m) for all t > 0, where f (m) is a probability function. Properties i) and i) follow

M M
from the uniform convergence and the properties of the survival function S. Property ii) follows
zZ
immediately by observing that S*(t) = ﬁ PT>t,M>1). O

Del teorema anterior conviene dar las observaciones siguientes, de acuerdo con Cooner et al.

(2007)
a) If po = 0 a non cure rate model is obtained, where the survival function is S* given by (5).

b) When py > 0, the model with latent risk factors becomes a mixture cure rate model, where
the cure rate is pg = P(M = 0), and the survival function of the susceptible individuals is
S* given by (5).

¢) The mixture cure rate model given in (1) becomes a model with laten risk factors when
M follows a Bernoulli distribution with P(M = 1) =1 — pg and S,(t) = S(t).

d) The promotion time cure rate model becomes a model with laten risk factors when
K =1, M follows a Poisson distribution and the times of activation follows an exponential

distribution.



Thus, the model with latent risk factors by Cooner et al. (2007) describes how the time to-event
is generated. The mixture cure rate and the promotion time models are particular cases of this
model. Notice that this model also provides a general way to obtain survival distributions by
specifying the distribution of M and K. When P(M = 0) > 0 a non-cure rate model is obtained.

Corollary 1 establishes that when the distribution of M is truncated in zero the survival
function obtained is the one that corresponds to the susceptible individuals. This result is not

given in Cooner et al. (2007).

Corollary 1. Let Sy(t) = po+ (1 —po)S*(t) be the cure rate model obtained under assumptions

of Theorem 1. When the distribution f is truncated in zero the resulting survival function is

S*(0). "

Proof. Since the distribution of f truncated in zero is ﬁ f (m), the claim follows from 5. [
M M

In subsections 2.1 and 2.2 examples are given to illustrate this result.
The remaining of this section is dedicated to show three specifications for the distribution of

K called by Cooner et al. (2007) as activation schemes.

2.1 The first-activation scheme

In this case K = 1 that is, the first activation makes the event of interest to appears. Thus
the time to-event, the survival function of the susceptible individuals, Sj(t), and the survival

function of the entire population, S,r(t), where F' denotes the first activation, become

{ 0o, if M =0,
T = 9)
Z(l) :min{Zl, ey Z]\/[}7 if M > 1,
SH(t) = 1= 3 ST (0 (m) (10)
m=1
and
Spr(t) = 3 S (0] (m) = g,,(S.(0) (1)
m=0

where g, is the probability generating function of M.

The promotion model is obtained from this scheme when M follows a Poisson distribution.
Recently new cure rate models of this activation scheme have appeared in the literature. For
instance in Cancho et al. (2011a) and Rodrigues et al. (2009) the Weibull distribution is
considered for the time of activation and for the distribution of M the power series is considered
in Cancho et al. (2011a), while Rodrigues et al. (2009) considers the COM-Poisson.



On the other hand, non-cure rate models obtained without using the theory of latent risk
factors can also be considered as particular cases of the first activation scheme by taking for
the number of risk factor, the geometric, the Poisson, the logarithmic and the power series
distributions truncated in zero (see e.g., Adamidis & Loukas (1998), Kus (2007), Tahmasbi &
Rezaei (2008) and Chahkandi & Ganjali (2009), Morais & Barreto-Souza (2011)).

2.2 The last-activation scheme

In this case K = M; that is, the last activation leads to observed the event of interest. Thus
the time to-event, the survival function of the susceptible individuals, S7(t), and the survival

function of the entire population, Sy, (t), where L denotes the last activation, become

{ oo, if M =0,
T = (12)
Zogy=max{ Z1, ..., Zy }, M > 1,
1 oo
Si()=1- Er (D)1 (m). (13)
L 1 — Po el M

and

Spr(t) =14+ P(M =0) — g (Fa(t)). (14)

Recently new cure rate models of this activation scheme have appeared in the literature.
For instance in Cancho et al. (2011a) the Weibull distribution is considered for the times of
activation and the power series distribution for M. On the other hand, non-cure rate models
obtained without using the theory of latent risk factors can also be considered as particular
cases of the first activation scheme by taking the exponential and the Weibull distribution for
the times of activation and for the number of risk factor, the geometric, the Poisson, and the
power series distributions truncated in zero (see e.g., Adamidis et al. (2005), Cancho et al.
(2011b) and Flores et al. (2011)).

2.3 The uniform random-scheme

In this case, the conditional distribution of K given M = m is uniform on {1,...,m}, that is,
the kth activation leads to observe the event of interest with probability 1/m for k =1,...,m.
Thus the survival function of the susceptible individuals, S%(t), and the survival function of the

entire population, S,g(t), where R denotes the uniform random activation, become

Sk(t) = Sa(t) (15)



and

SpR(t) =po + (1 - p0>5a(t)7 (16)

Notice that, in this case, the distribution of M only affects the determination of the cure rate
po = P(M =0).
Corollary 2 establishes the stochastic order between the survival functions of these activation

scheme. This result is not given in Cooner et al. (2007).

Corollary 2. Inequalities (17) and (18) hold for every distribution of M

SH(t) < Sult), Sult) < Si(1) (17)
and

pr(t) < Sa(t), Sa(t) < Spr(t). (18)

Proof. The inequalities given in (17) follow from (10) and (13) and (18) follows immediately
from (17). O

A similar result is given in Kim et al. (2011), where K and M are independents and the time

to-event T' is equal to infinity, if M < K, and is Z(g) it M > K.

3 Derivation of the model

Assume that in the model with latent risk factors, developed in Section 2, M follows a power
series distribution, that is, its probability function is given by

am0™

10

f(m)=P(M =m) = ,m=0,1,2,...; €0, (19)

where ag, a1, ag, ... is a sequence of non-negative real numbers, where at leats one of them is

strictly positive, © = (0, s), where s is a positive number no greater than the ratio of convergence
o0 oo

of the power series > a,0™, and C(0) = >  an,f™, V0 € (0, s). Notice, in particular, that C
m=0 m=0
is positive and infinitely many differentiable. The cure rate is given by pg = P(M = 0) = 29

el()
and the probability generating function is g(s) = CC(?(;;)’ if s € ©. The Poisson, geometric and

logarithmic distributions, among others, are particular cases of this distribution. These cases

will be considered in this paper and are showed in Table 1.



Table 1: Particular cases of the power series distribution

Distribution ]jv[ (m) am C(6) ) Do
670 m
Poisson —.m=0,1,2,... % ef (0, o) e?
m: '
Geometric ~ 0™(1—0), m=0,1, 2,... 1 (1-6t (o, 1) 1-46
9m+1
Logarithmic ,m=0,1,2,... L —log(1—0) (0,1) —6/log(1—0)

—(m+1)log(1 —8)

Observe that in each case the power series converges to 6 € O.

Moreover, it will be assumed that the times of activations follow the two-parameter
generalized exponential (GE) distribution with parameters A > 0 and a > 0, introduced by
Gupta & Kundu (1999). The failure rate function of this distribution is similar to the Weibull

distributions, its cumulative probability, survival and density functions are given for all ¢ > 0 by

Fu(t) = (1 —e )", (20)

Se(t)=1—-(1— e’)‘t)o‘ (21)
and

falt) = a)\e*/\t(l - e*)‘t)afl, (22)

respectively. With these assumptions the cure rate models derived with the first, the last and
the uniform-random schemes will be denoted by GEPSF, GEPSL and GEPSR, respectively.
The survival functions of these models are obtained by (11) (14) and (16) and are given by

Spp(t) = C’(gsg‘;gt)), (23)

SpL(t) — 14+ Ca(oe) _ 0(9(16'?0*)ga(t)) (24)
and

S®) = gy + (1= gy Sald) (25)

respectively. Notice that 65,(t) < 8 < s and 6(1 — S,(t)) < 0 < s.
When the Poisson distribution is considered the cure rate models derived with the first, the

last and the uniform-random schemes are denoted by GEPF, GEPL and GEPR, respectively.



Similarly when the geometric distribution is considered the cure rate models derived with the
first, the last and the uniform-random schemes are denoted by GEGF, GEGL and GEGR,
respectively. Finally when the logarithmic distribution is considered the cure rate models for
these schemes are denoted GELF, GELL and GELR, respectively. The survival function of these
models are obtained by replacing the associate C'(6) and ag, given in Table 2, in the equations
(23), (24) and (25). Now, as in Cancho et al. (2011a), the cure rate pp is incorporated in
these functions by the reparametrization § = C~'(ag/po). Thus, for the Poisson, geometric and
logarithmic distributions 6 becomes — log(pg), 1—po and 1—|—p0W(—poe*1/ Po) | respectively, where
W (-) stands for the Lambert W function (Corless et al., 1996). With this reparametrization
the survival and density extended function of these models are given in Table 2, as reported in
Cancho et al. (2011a).

Table 2: Survival function (S,) and density function (f,) for some models

Model Sp(t) fo(t)
GEPF phe® —log(po)py" " fu(t)
GEPL 1+ po—pi® —log(po)po"" falt)
GEPR po+ (1 = po)Sa(t) (1 —po) fa(t)
~ _ Pyl —1
GEGF {1+ (p" —DFu(t)} o (pa(i — 1)Fa(t)}2fa(t)
_ - py —1
GEGL 1+po— {1+ (py' = D)S(y)} " T <p601 AT ERAR
GEGR po+ (1 — po)Sa(t) (1 —po)fa(t)
log(1 — WoSa(t)) WoSa(t) + {1 — WoSa(t)} log(1 — WoS,(t))
GELF BTN 1= WoSu()]WoSu (12 pofa(t)
log(1 — WyF, WoF, 1 — WoF,(t)}log(1 — WoF,
GELL 1+ po + 8 i Fa(z 5 ©) ,,  WoFalt) El{— TR ( t()t})v}vo ij( 7 0Fel®)) 1, (0)

GELR Po + (1 —po)Sa(t) (1 —po)fa(t)
Remark. Wo = 1+ po W (—e /70 /pg), where W(-) is the Lambert W function (Corless et al., 1996).

The functions f,(t) and Sy(t) have three parameters, o, A and pp. Thus for all ¢ > 0, a > 0
A >0 and pg € (0, 1), will be defined

fp(ta7ap0) = fp(tvaa)‘,pO) = fp(t)

(26)
Sp(t, v, p0) = Sp(t, a, X, po) = Sp(t),

with v = (o, \) .



As mentioned in Section 1, the cure rate for the ith individual in a sample of size n is
given by a logistic regression between py and the covariates as given in equation (2). Under
this link function the models are identifiable in the sense of Li et al. (2001). In this case the
models generated by the uniform-random scheme are equals to the exponential cure rate model

proposed by Kannan et al. (2010), that is, GEPR=GEGR=GELR=GE.

4 Inference

Let us consider that for the i-th individual, in a sample of size n, it is observed ¢; = min{7;, C;}
and §; = I(T; < (), where T is the time to-event, C; is the censoring time and I(7; < C;) is
the indicator function.

Let ! = (’yT, ﬁT) be the model vector parameters and ¥ C R?* x R* the parametric
space. The likelihood associated with (¢1,d1,®1),. .., (tn, On, ) can be written by

E(wa D) - H fp(tia v, pOi)éi Sp(tia Y, poi)li&) (27)
i=1

where D = (¢,8, X), t = (t1,...,tn) ", x = (x1,...,2,) ", X = (x{,...,2,.),0 = (61,...,6,)",
fp(+, -, -)and Sp(-, -, -) are the extended density and survival functions in equations (26).

The log-likelihood associated with D can be written as

n

E(’(ﬂ) = Z[éilog(fp(ti§77p01)> + (1 - 5i)l09(5p(ti;77p0i)) ]? (28)

i=1
The maximum likelihood estimation is obtained by direct maximization of (28)) via the BBoptim

function of the R program (R Development Core Team, 2011). The Lambert W function in Table

2 can be found in the R package emdbook. Under suitable regularity conditions it can be shown
that the asymptotic distribution of the maximum likelihood estimator z/ﬁ\ is multivariate normal

-~

(see details in Lawless (2003)) with mean vector 1 and covariance matrix 3 (), which can be

estimated by f)(iZ) = —i_l(d;), the observed information matriz, that is,

_ 0M(¢)

L) = Suoot

(29)

5 Sensitivity analysis

This section outlines a methodology to perform a sensitivity analysis.

10



5.1 Global influence

To analyse the influence of observations on the parameters estimates it is common to use the
case-deletion approach (see Cook (1977)) which measures the effect of removing the ith sample
case.

Let £(;) be the log-likelihood function when the ith sample case is removed. Then, by (28)

Loy@) = D [didog(fo(ti;vspo,)) + (1 = 6:)log(Sp(ti; ¥:po,)) ], (30)

je{l,...n}—1

b

where subscript “(i)” means the original quantity with the ith case deleted. Let 1/;(1) =
('S/(—E), B(T;))T denote the maximum estimate of £(;y(p). Thus, the ith case is regarded as an
influential observation if the difference between ;) and 1 is large.

Since 1/3(1-) must be calculated for the n cases, the following approximation, given in Cook &

Weisberg (1982), is used to simplify the computational time:

Py~ — L) (), (31)

where é(i) (1,5) is the derivative 86&(}1#) evaluated at ¥ = ).

By substituting in (31) the decompositions

R a/f(g(w)
oB )
and _
TN A, A
@)= 7 (33)
L B B
the following approximations are obtained:
X 0L iy () 0Ly ()
7(1) ~ T (A’Y a,y + A’Y,@ 8ﬁ ) (34)
; 0Ly () 03y ()
B ~ B (Ap—p5 T A5 ) (35)

Usual measures for the difference between zﬁ(i) and 'Lﬁ are detailed in the following subsection.

5.1.1 With The generalized Cook distance

A measure for the difference between 1,@(1-) and 1,5, denoted by GD;, is the following generalized

Cook distance

GD; = (V) — '%Z’)T(‘L(lﬁ))(‘/;(z) — ). (36)



Since 1/A)T maximises the log-likelihood function, -L is positive definite and GD; is, indeed, a
mathematical distance. Thus, the distance between 1,/;@) and 1/} is a measure of the influence of
the ith sample case on the vector of parameters estimates. Equation (31) gives the following
approximation for this distance
. ~ . 71 A . A
GDi Ly () " (L () Loy (). (37)
Now, following in Li et al. (2012), some measures of the influence of the ith sample case on sub

vector of parameters estimates 4 and @ are derived. By substituting (34) and (35) in (37) is

follows
M p ) . AT .
GD; ~ ()(¢)A7 0 %) A 0¥ | %mW) A ®(¥)
Oy Oy Oy o o8 B
From this approximation, the following quantities
A~ T A
o) 0y ()
. (1) (@)
GD;i() 0y A, o (38)
and o (Q'Z,)T o0 (17[,)
4 ~ 2@ (@)
GDi(B) = 3 Ag 08 (39)

are considered measures of the influence of the ith sample case on the estimates 4 and 83,

respectively.

5.1.2 With the likelihood displacement

The likelihood displacement of 'l[)(i) with respect to 1[) is given by

LD; = 2{0(3)) — £(3bi))}- (40)

Since '&T maximises the log-likelihood function LD; is non-negative but it is not a mathematical
distance. As emphasized in Cook (1986), this measure is extensively used because of its large

sample properties, for instance one of these establishes that

{9 2[0(h) — ()] < X* },

is a confidence region for 1, where x? is a value of a chi-squared distribution with k + 2 degrees

of freedom. Since

~ . ~

LD(y) = (¢ — )" (-L(#)) (3 — ),
in a neighborhood of 1&, then
LD; ~ GD;, (41)

whenever zﬁ(i) is closed to 1[), as observed in Li et al. (2012).

12



5.2 Local influence

A different approach to perform a sensitivity analysis considers the effect of small perturbations
in the model or in the data according to a particular scheme. This approach, which is called Local
influence, was proposed by Cook (1986) for the linear regression model and later it was extended
to more general model as described in Escobar & Meeker (1992). Let w = (wq,...,wy) be the
vector of numbers that quantifies the perturbation and ¢W (1, w) the associated log-likelihood
function, where ¥ € ¥ and w € €2, an open subset of R™. It is assumed that there exists wq
such that no perturbation occurs when w = wp. Thus, ¢W (2, wy) = £(1p) and 1) maximizes
W (-, wp).
The log-likelihood displacement function, LDW, is defined by

LDW (w) = 2{() — £(3pu)}, (42)

where ), maximizes (W (-, w). As pointed out in Cook & Weisberg (1982), large values of
LDW indicate that zﬁ and 1[)W differ considerably relative to the contours of the unperturbed
log-likelihood ¢(1p). Cook (1986) states that the graph of the surface (w, LDW (w)) contains
essential information on the influence of the perturbation scheme in question. In order to measure
this influence he uses curvatures as follows.

The curvature of LDW, in the direction of the unit vector h, evaluated in wy is given by

_ 02LD(wy + ah)

I

h Ch da? =2 AR <43)

where = PLGbu, wo) (44)
- owow'"

From (43) the maximum curvature, Cy,qz, is obtained when h is the eigenvector, hy,q2, associated
with the largest eigenvalue of A. Thus, hpmaez = (Pmazys - - - ,hmazn)T indicates how to perturb
the model or data to obtain the greatest local change in LDW. According to Cook (1986), the
plot of (4, Rmag,;), ¢ = 1,...,n, identifies potential influential cases and hy,qz, > 2 can be used
as a benchmark to indicate that the ith observation is influential.

Other benchmarks from which an observation can be considered influential are given next.

Let u; € R™ be the vector of zeros whit a single 1 in the ith position, C; = 2A; the
k42

curvature associated with w; and M(0); = C;/ Y Aj, i = 1,...,n, where Ay > -+ > Ao
i=1

J
be the k + 2 positive eigenvalues of 2A. Let M(0) and S (o) denote the sample mean and

the standard deviation of M(0)y,..., M (0),, respectively. Notice that M(0) = 1/n, because
k+2 .

> Aj = trace(2A). The plot of (i,M(0);), i = 1,...,n, is another graphical way to identify
j=1

possible influential cases. Poon & Poon (1999), Zhu & Lee (2001) and Escobar & Meeker (1992)

13



k+2
proposed the benchmarks M(0); > 2/n, M(0); > 1/n + 2Sy(0) and M(0)i > X3 5400/ > Ajs
" j:l

respectively, to indicate that the ith observation could be considered influential.

Thus, the matrix A is key to carry out the analysis of local influence. The following identity,

given by Cook (1986), is used to facilitate the calculation of A :

A=AT(-L@)) A, (45)

where

_ 62€W(’lﬁa ’LU())
A= e (46)

Hence it is important to calculate the matriz A.

5.2.1 Perturbation schemes

The perturbation schemes for the model and data, used in this paper, are described bellow.

Some identities to obtain the matrix A are derived.

a) Weight perturbation. In this case, the vector w = (wq,...,w,), used to quantify the
perturbation, affects the log-likelihood function as follows

n

W (g, w) = > [widilog(fo(t1, ¥, po,)) + wi(1 = 1)log(Sy(ti, ¥, po,)) ], (47)
=1

where 0 < w; < 1. The non-perturbation vector is wo = (1,...,1)T.

Since % = %GWZ'(’(M, with

GWi(¥) = dilog(fp(ti, v:po,)) + (1 = 8i)log(Sp(ti, 7, po))- (48)

The computational calculation of A is directly from the jacobian of GW(v) =
(GW1(2), . ..,GWy (1)), that must be evaluated in .

b) Perturbation of responses. In this case the perturbation is originated in the responses,
ti, from t; + w;sp, i = 1,...,n, where w = (wy, ..., w,) is the vector used to quantify the
perturbation and s7 is a scale factor estimated by the standard deviation of responses.

The non-perturbation vector is wg = (0,...,0)7.

The perturbed log-likelihood function is given by

n

EW(’!P, ’LU) = Z[éll()g(fp(tl + wl8t77ap01)) + (1 - 5l)lo.g(5p(tl + wlSta’)’,pol))] (49)
=1
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From this equation it follows that %EW(«#, wy) = GR;(v¢), where

Wy

GRl(w) _ ST{ 3tfp( ST, %Y poz) N ( )fp( +ST777p01) } (50)
fo(ti + sT,7, po;) Sp(ti + sT3,po,)
The computational calculation of A is directly from the jacobian of GR(¢) =

(GR1(v),...,GR, (1)), that must be evaluated in .

Perturbation of the explanatory variables. In this case, the perturbation is originated
in one of the covariates. If (z1,, ..., Znk,) is the vector of the values of Xy, in the sample,
then the perturbed vector of values is (x1, + wisx,,,---;Tnk, + WnSx,,), Where sx,

is the standard deviation of the observed values of this covariate. The vector of no-

perturbacién is wg = (0,...,0)". Let xw; be the vector obtained when the k,th entry
LT
in ®; = (za,...,2%)" is substituted by z;, + wisx,,, and pwo; = %, for

i=1,...,n. Thus, the perturbed log-likelihood function is given by

n

€W<¢a UJ) = Z[éllog(fp<tl777pw0l)> + (1 - 6l)log(sp(tl777pw0l)) ] (51)
=1
e (@7 B) exp(wis x,, Bro)
o explEy eXP(WiS Xy, Pko
peoi =3 + exp(x; ' B) exp(wisx,, Bro) (52)
then
aEW _ 9 o;l ti ; 1—6;)log(S,(t; ; 53
w; (Y, w) = Twl{ i Og(fp( i, Pwoi)) + (1 — 6;)log( p( i Y, Pwoi)) } (53)
and, by the chain rule, 5
5. W (¥, wo) = GEi(¥), (54)

where

GEZ(’lp _ stDBkoexp(—miTﬁ){ 5@%fp(t1777p01) (1 - 51)%Sp(t2777p02) } <55)

(1 +6Xp(—337j—|—,6))2 fp(ti777p0i) Sp(tiafyapoi)

The computational calculation of A is directly from the jacobian of GE(¢) =
(GE1(v),...,GE,(1)), that must be evaluated in .

6 Application

To illustrate the results of this paper the data set considered by Cancho et al. (2011a) is
reanalysed. The data set includes 205 patients observed after operation for removal of malignant

melanoma in the period 1962-77. These data are available in the timereg package in R (Scheike,
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2009). The observed time (7') ranges from 0.0274 to 15.25 years and refers to the time until
the patient’s death or the censoring time. Patients dead from other causes, as well as patients
still alive at the end of the study are censored observations (72%). The covariates considered
are X9 = ulceration status (present=1, n = 90; absent=0, n = 115), X3 = tumor thickness
(in mm, mean = 2.92 and standard deviation = 2.96), X4 = age (in years, mean= 52,46 and
standard deviation = 16,67) and X5 = sex (male=1, female=0), with coefficients (2, 3, f4 and
Bs, respectively, and (7 denotes the intercept. The Kaplan-Meier estimated of the surviving
function (see Figure 1) levels off above 0.6 and the presence of a plateau indicates that the
models that ignore the possibility of cure does not fit for these data. Therefore, the dataset
may be fitted by a cure rate model with covariates, in particular, the GE-PS cure rate models
GEPF, GEPL, GEGF, GEGL, GELF, GELL and GE, given in Table 2, are used.

=
-
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Surviving function
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0.2

0.0

0 5 10 15
Time (years)

Figure 1: Kaplan-Meier estimate of the surviving function.

6.1 Fitting models and parameter estimation

The maximum likelihood estimation for the vector parameters, ¥ = (a, A, f1, B2,...,05), is
obtained by direct maximization of (27) or (28) via the BBoptim function of the R program
(R Development Core Team, 2011). Table 3 presents the maximum values of the log-likelihood
function (I(-)), the estimated AIC and BIC criteria considering the all fitted distributions.
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Table 3: AIC and SBC for the fitted models.
Model () AIC SBC

GEPF -205,3233 424,6466 421,29262
GEGF -203,0158 420,0316 416,6776
GELF -200,9897 415.9794 412,6254
GEPL -212,0622 438,1244 434,77042
GEGL -214,9450 443,8900 440,53602
GELL -217,0028 448,0056 444,65162
GE -208,1857 430,3714 427,01742

According to the AIC' and SBC criteria, the GELF cure rate model outperforms its
concurrent distributions in both considered criteria. Table 4 shows the maximum likelihood
estimates (MLE), the standard errors estimates (SEE) by the observed Fisher information
matrix and the 95% confidence intervals for the parameters of the all fitted distributions. All the

covariates, except the age, have a significant effect on the determination of the cured fraction.

Table 4: MLE and SEE of the parameters for the GELF model.

Parameter Estimate (est) Standard error (se) |est| / se 95% IC

a 2,9685 0,6079 4,8835  (1,7771; 4,1598)
A 0,2227 0,0846 2,633 (0,0569; 0,3885)
51 1,8318 0,625 2,9311 (0,6069; 3,0567)
Bo -1,3875 0,3147 4,4091 (-2,0043; -0,7707)
B3 -0,1141 0,0343 3,3254  (-0,1814; -0,0469)
Ba 20,0041 0,0077 0,5302  (-0,0192; 0,011)
Bs -0,6083 0,2735 2,2245  (-1,1443; -0,0723)

6.2 Sensitivity analysis

In this subsection a sensitivity analysis is made for the GELF proposed model, according to
Section 5. The measures of global and local influence ware calculated.

6.2.1 Global influence

To measure the influence of the ith sample case on the vector of parameters estimates it is
calculated the case-deletion measures GD; and LD; described in Subsection 5.1. Theses measures

are similar, as shown in Figure 2. This similarity suggests that the removing of the ith sample
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case does not affect significantly the estimation of the parameters, as pointed out in (41). Notice

from the figure that since the cases 5, 6, 7, 10, 11, 13, 15 and 29 are above of the benchmark

they are the most influential.
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Figure 2: Index plot of case-deletion measures. Left panel: the generalized Cook’s distance
(GC;). Right Panel: The likelihood distance (LD;).

Influence measures on the estimation of sub-vectors v = (a, A), the parameters of time

activation, and 3, the coefficients of regression, were also calculated and illustrated in Figure

3. Notice from the figure that since the cases 5, 6, 7, 10, 11, 26, 29 and 31 are above of the

benchmark they are the most influential.
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Figure 3: Index plot of case-deletion measures for the subvectors parameters. Left panel: the

generalized Cook’s distance GC;(7y). Right Panel: the generalized Cook’s distance GC;(3).
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6.2.2 Local influence

The influence measures given in subsection 5.2 will be calculated under the perturbation schemes.

Case weight perturbation. The value C),q, = 2, 8160 is a maximum curvature. The possible

influential cases are indicated by the plots in Figure 4.
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Figure 4: Index plot of local influence measures with the weight perturbation scheme. Left

panel: Direction of maximum curvature, h,q,. Right Panel: M (0);.

Perturbation of responses. The value C),,, = 54,7037 is a maximum curvature. As shown

in Figure 5, the cases 5, 6, 7, 9 and 10 would be the most influential.
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Perturbation of explanatory variable thickness. The value C,4, = 81, 7252 is a maximum
curvature. The plots in Figure 6 suggests that the cases 5, 6, 7, 9, 10, 19, 21 and 35 are the

most influential.
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Figure 6: Index plot of local influence measures with the perturbation scheme for the covariate

thickness. Left panel: Direction of maximum curvature, h,q,. Right Panel: M (0);.

Perturbation of explanatory variable age. The value C,,,, = 1,0305 is a maximum

curvature. The plots in Figure 7 suggests which cases are the most influential.
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Figure 7: Index plot of local influence measures with the weight perturbation scheme. Left

panel: Direction of maximum curvature, h,q,. Right Panel: M (0);.
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In conclusion, according to the sensitivity analysis performed, the subset of potentially
influential cases is I = {5,6,7,9,10,11,13,14,15,17,19, 21, 26,29, 35,43,72,111, 149}.

6.2.3 Impact of the detected influential observations

Each one of the cases in [ is removed and then proposed model is refitted. To measure the impact

of this removing on the estimation of 1; let us consider the following relative rate changes (rce):

and the standard error estimate (rcse)

ree(ih;) = 100(¢); — &(i))/@;i,

rese(;) = 100(3ey, — Sey,) )/ Seyp,,

These quantities are shown in Table 5. Considerables rates changes only occur in the estimates

of the regression coefficient 54, associated with the covariate age. Since this covariate is removed

from the model because is not significant, then the proposed model seems not to be sensitive to

the influential observations.

Table 5: Relative changes in the estimates (rce) and in the standard error estimates (rcse) of parameters

B2
Case rce rcse rce rcse rce rcse rce rcse rce rcse rce rcse rce rcse
5 /05 1,1 05 21 1 03 07 06 108 45 274 17 46 05
6 |79 122 65 11 103 13 11 01 53 17 766 04 41 19
7 |82 134 96 14 61 43 09 05 91 06 77,8 16 62 08
9 |28 21 46 18 17 38 09 01 6 103 137 24 27 04
10 |58 93 35 04 08 10 10 01 1,0 15 263 09 168 06
11 |63 93 32 05 28 00 14 01 22 10 57 06 136 02
13 |37 58 08 03 18 04 20 01 21 08 256 06 114 0,1
14 |03 15 13 05 36 06 23 00 25 18 187 12 68 04
15 |18 27 26 03 80 36 28 04 01 00 737 15 92 09
17 |23 16 41 04 08 25 22 01 09 14 156 05 54 04
19 |26 16 38 1,7 55 55 14 03 03 25 30 117 38 08
21 |28 1,7 49 22 06 56 08 01 08 65 183 45 62 52
26 |05 06 29 01 00 30 43 19 07 02 21,1 03 45 07
29 |08 12 53 07 76 67 42 18 43 03 57,3 09 56 08
3 [33 19 50 32 22 36 20 65 54 83 45 05 27 01
43 |04 1,7 22 1,9 14 01 02 00 95 43 14 21 102 18
72 |12 03 04 20 14 00 35 24 24 16 370 25 58 10
111 |04 08 33 20 1,8 13 31 25 25 14 20,0 23 41 13
149 |21 37 98 23 44 40 30 28 48 14 238 41 19 20

9

?

9

)
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6.3 Final model and goodness of fit

In Table 6 are listed the estimates of the parameters of GELF cure rate model, with their
estimates standard errors and the 95% confidence intervals. The covariates ulceration status,
X5, tumor thickness, X3, and sex, X5, have a significant effect on the cured fraction. The
proportion of patients cured is lower for patients with ulceration than for those without it. The
covariate tumor thickness has a significant effect on the reduction of the cured fraction. The
proportion of people cured is greater for the woman than for the men. The estimated cure rate
for the ith individual is given by

~exp(1,6351 — 1,3947x5 — 0, 1174x;3 — 0,60142;5)

1+ exp(1,6351 — 1,3947x;0 — 0,11742;3 — 0,60142;5)

where x;1, ;0 and ;5 are the associated values of covariates ulceration, thickness and sex,

Doi

respectively. An estimation for the cure rate in the entire population of individuals is given by
205

Po = 55z me 0, 5948.

Table 6: Maximum likelihood estimates of the parameters for the GELF model.

Parameter Estimate (est) Standard error (se) 95% 1C

a 92,9844 0,6133 (1,7824; 4,1864)
A 0,2262 0,0851 (0,0595; 0,3930)
b1 1,6351 0,4849 (0,6847; 2,5855)
Bs -1,3947 0,3152 (-2,0125; -0,7770)
B3 -0,1174 0,0337 (-0,1835; -0,0514)
s -0,6014 0,2725 (-1,1356; -0,0673)

Figure 8 shows the fitted survival function superimposed to the empirical survival function.

It can be seen that the fitness is good.

— Kaplan-Meier
— BELF
0,5948

Do

=]

08

06

Suryiving function
04

0.2

0.0

T T T
0 5 10 15
Time (years)

Figure 8: Kaplan-Meier estimate of the surviving function.
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7 Concluding remarks

In this report the theory of models with latent risk factors under activation schemes, introduced
by Cooner et al. (2007), was described and new results based on it were given. A new family of
cure rate models with covariates called the generalized exponential-power series was derived by
applying this theory. In addition the procedure to perform a sensitivity analysis for general
models was summarized. Analytical expressions were provided to facilitate computational
required to accomplish the analysis of local influence. To show the flexibility and potential
of this family as a cure rate model, particular cases of this family to a real data set were fitted.
For the best fitted model to the data, a sensitivity analysis was performed including diagnostic
measures based on case-deletion and local influence approaches. This sensitivity analysis showed

the robustness of the model against influential observations.
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